xdoj1420(二项式反演+FFT)

题目链接

http://acm.xidian.edu.cn/problem.php?id=1409

题解

解法一

公式推了挺久。。

设答案为 $f(k)$ ,那么有

然后后面的和式可以用 $FFT$ 做,复杂度 $O(nlogn)$

解法二

这题还可以利用生成函数。。

设指数型生成函数 $G(x,z)=1+z(e^x-1)$ ,有

那么,所需要的项为 $z^k\frac{x^m}{m!}$ ,其系数为

这和上面的结果一样了




代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/**
*         ┏┓    ┏┓
*         ┏┛┗━━━━━━━┛┗━━━┓
*         ┃       ┃  
*         ┃   ━    ┃
*         ┃ >   < ┃
*         ┃       ┃
*         ┃... ⌒ ...  ┃
*         ┃ ┃
*         ┗━┓ ┏━┛
*          ┃ ┃ Code is far away from bug with the animal protecting          
*          ┃ ┃ 神兽保佑,代码无bug
*          ┃ ┃           
*          ┃ ┃       
*          ┃ ┃
*          ┃ ┃           
*          ┃ ┗━━━┓
*          ┃ ┣┓
*          ┃ ┏┛
*          ┗┓┓┏━━━━━━━━┳┓┏┛
*           ┃┫┫ ┃┫┫
*           ┗┻┛ ┗┻┛
*/

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<set>
#include<bitset>
#include<complex>
#include<assert.h>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y)/2
#define NM 400005
#define nm 300005
using namespace std;
const double pi=acos(-1);
const ll inf=998244353;
ll read(){
ll x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}



int n,m,rev[NM],_x;
ll a[NM],b[NM],inv[NM],invp[NM],p[NM],_t;
ll qpow(ll x,ll t){return t?qpow(sqr(x)%inf,t>>1)*(t&1?x:1ll)%inf:1ll;}

void fft(ll*a,int f){
inc(i,0,n-1)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int k=1;k<n;k<<=1){
ll t=qpow(3,(inf-1)/k/2);if(f==-1)t=qpow(t,inf-2);
for(int i=0;i<n;i+=k<<1){
ll w=1;
for(int j=0;j<k;j++,w=w*t%inf){
ll x=a[i+j],y=w*a[i+j+k]%inf;
a[i+j]=(x+y)%inf;a[i+j+k]=(x-y+inf)%inf;
}
}
}
}

void plu(ll*a,ll*b){
int bit=0;
n=2*n-1;
while(succ(bit)<n)bit++;n=succ(bit);
inc(i,1,n-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
ll invn=qpow(n,inf-2);
fft(a,1);fft(b,1);inc(i,0,n-1)a[i]*=b[i],a[i]%=inf;
fft(a,-1);inc(i,0,n-1)a[i]*=invn,a[i]%=inf;
n=_x;
}

int main(){
n=1e5;p[1]=p[0]=invp[0]=inv[1]=invp[1]=1;
inc(i,2,n)p[i]=p[i-1]*i%inf,inv[i]=inv[inf%i]*(inf-inf/i)%inf,invp[i]=invp[i-1]*inv[i]%inf;
while(~scanf("%d%d",&m,&n)){
mem(a);mem(b);
_t=m;_x=n;
inc(i,0,min(n,m))if(i&1)b[i]=inf-invp[i];else b[i]=invp[i];
inc(i,1,min(n,m))a[i]=qpow(i,n)*invp[i]%inf;
n=min(n,m);n++;
plu(a,b);m=_t;_t=qpow(inv[m],_x);
n=min(n,m);
inc(i,1,n)a[i]=a[i]*p[m]%inf*invp[m-i]%inf*_t%inf;
inc(i,1,n-1)printf("%lld ",a[i]);printf("%lld\n",a[n]);
}
return 0;
}