now881D(FWT+容斥)

题目链接

https://ac.nowcoder.com/acm/contest/881/D

题意

给定 $n$ 个 $m$ 元组$a{i,1},a{i,2}..a{i,m}$,设 $count(x)$ 为满足元组内所有元素 $x$ 做与操作之后有奇数个 $1$ 的元组的个数,求 $\oplus{x=0}^{2^k-1}(count(x)3^x\bmod{10^9+7})$

$n\le10^5,m\le10,k\le20$

题解

主要是 $count$ 这个东西不太好搞。。比较绕。。

由奇偶性容易想到异或运算,在 $FWT$ 的证明中用到 $(-1)^{|i\& x|}$ 来表示奇偶性,同样我们可以用这个来构造

发现这个和式是 $FWT$ 的定义式,直接 $FWT$ 即可。。




代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/**
*         ┏┓    ┏┓
*         ┏┛┗━━━━━━━┛┗━━━┓
*         ┃       ┃  
*         ┃   ━    ┃
*         ┃ >   < ┃
*         ┃       ┃
*         ┃... ⌒ ...  ┃
*         ┃ ┃
*         ┗━┓ ┏━┛
*          ┃ ┃ Code is far away from bug with the animal protecting          
*          ┃ ┃ 神兽保佑,代码无bug
*          ┃ ┃           
*          ┃ ┃       
*          ┃ ┃
*          ┃ ┃           
*          ┃ ┗━━━┓
*          ┃ ┣┓
*          ┃ ┏┛
*          ┗┓┓┏━━━━━━━━┳┓┏┛
*           ┃┫┫ ┃┫┫
*           ┗┻┛ ┗┻┛
*/

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<set>
#include<bitset>
#include<complex>
#include<cstdlib>
#include<assert.h>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define mid (x+y>>1)
#define sqr(x) ((x)*(x))
#define NM 1100005
#define nm 400005
using namespace std;
const double pi=acos(-1);
const ll inf=1e9+7;
ll read(){
ll x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}


inline void reduce(ll&x){x+=x>>63&inf;}
int n,a[NM],b[NM],ctz[NM],popcount[NM],m,tot,p;
ll c[NM],ans,pw[NM];

ll qpow(ll x,ll t){
ll s=1;
for(;t;t>>=1,x=x*x%inf)if(t&1)s=s*x%inf;
return s;
}


void fwt(ll*a){
for(int k=1;k<n;k<<=1)
for(int i=0;i<n;i+=k<<1)
for(int j=0;j<k;j++){
ll x=a[i+j],y=a[i+j+k];
reduce(a[i+j]=x+y-inf);
reduce(a[i+j+k]=x-y);
}
}


int main(){
inc(i,0,1023)ctz[i]=1+__builtin_ctz(i),popcount[i]=__builtin_popcount(i);
pw[0]=1;inc(i,1,1048576)pw[i]=3*pw[i-1]%inf;
while(~scanf("%d%d%d",&n,&m,&p)){
tot=succ(p)-1;
inc(i,0,tot)c[i]=0;
tot=succ(m)-1;
c[0]=n;
inc(i,1,n){
inc(j,1,m)a[j]=read();
inc(j,1,tot){
b[j]=b[j^lowbit(j)]^a[ctz[j]];
if(popcount[j]&1)c[b[j]]--;else c[b[j]]++;
}
}
n=succ(p);ans=0;
//inc(i,0,n-1)printf("%lld ",c[i]);putchar('\n');
inc(i,0,n-1)reduce(c[i]%=inf);
fwt(c);
m=qpow(inf+1>>1,m);
inc(i,0,n-1)ans^=pw[i]*c[i]%inf*m%inf;
printf("%lld\n",ans);
}
}