1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
| #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<map> #include<stack> #include<cmath> #include<set> #include<bitset> #include<complex> #include<cstdlib> #include<assert.h> #define inc(i,l,r) for(int i=l;i<=r;i++) #define dec(i,l,r) for(int i=l;i>=r;i--) #define link(x) for(edge *j=h[x];j;j=j->next) #define mem(a) memset(a,0,sizeof(a)) #define ll long long #define eps 1e-8 #define succ(x) (1<<x) #define lowbit(x) (x&(-x)) #define sqr(x) ((x)*(x)) #define NM 300005 #define nm 300005 using namespace std; const double pi=acos(-1); const ll inf=998244353; ll read(){ ll x=0,f=1;char ch=getchar(); while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();} while(isdigit(ch))x=x*10+ch-'0',ch=getchar(); return f*x; }
int n,m,_n,_m; ll a[NM],b[NM],c[NM],d[NM],_b[NM],_c[NM];
ll qpow(ll x,ll t){return t?qpow(sqr(x)%inf,t>>1)*(t&1?x:1ll)%inf:1ll;}
struct FFT{ int n,rev[NM],bit; ll b[NM],invn; void fft(ll*a,int f){ inc(i,0,n-1)if(i<rev[i])swap(a[i],a[rev[i]]); for(int k=1;k<n;k<<=1){ ll t=qpow(3,(inf-1)/k/2);if(f==-1)t=qpow(t,inf-2); for(int i=0;i<n;i+=k<<1){ ll w=1; for(int j=0;j<k;j++,w=w*t%inf){ ll x=a[i+j],y=w*a[i+j+k]%inf; a[i+j]=(x+y)%inf;a[i+j+k]=(x-y+inf)%inf; } } } } int plu(ll*a,ll*_b,int p,int m){ inc(i,0,m-1)b[i]=_b[i]; for(n=p+m+1,bit=0;succ(bit)<n;bit++);n=succ(bit); invn=qpow(n,inf-2);inc(i,p,n)a[i]=0; inc(i,1,n-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1)); fft(a,1);fft(b,1);inc(i,0,n-1)a[i]=a[i]*b[i]%inf; fft(a,-1);inc(i,0,n-1)a[i]=a[i]*invn%inf; inc(i,0,n-1)b[i]=0; return m+p; } }fft;
void inv(ll*b,ll*a,int m){ if(m==1){b[0]=qpow(a[0],inf-2);return;} inv(b,a,m+1>>1); inc(i,0,m-1)_b[i]=b[i]; fft.plu(_b,a,m,m); inc(i,0,m-1)_b[i]=-_b[i]; _b[0]+=2; fft.plu(b,_b,m,m); }
void div(ll*c,ll*d,ll*a,ll*b,int n,int m){ reverse(a,a+n);reverse(b,b+m); inv(_c,b,n-m+1); inc(i,0,n-1)c[i]=a[i]; fft.plu(c,_c,n,n-m+1); reverse(a,a+n);reverse(b,b+m);reverse(c,c+n-m+1); inc(i,0,m-1)d[i]=b[i]; fft.plu(d,c,m,n-m+1); inc(i,0,m-1)d[i]=(a[i]-d[i]+inf)%inf; }
int main(){ n=read()+1;m=read()+1; inc(i,0,n-1)a[i]=read(); inc(i,0,m-1)b[i]=read(); div(c,d,a,b,n,m); _n=n-m+1;_m=m-1; inc(i,0,_n-1)printf("%lld%c",c[i]," \n"[i==_n-1]); inc(i,0,_m-1)printf("%lld%c",d[i]," \n"[i==_m-1]); return 0; }
|