loj6268(五边形数+多项式逆元)

题目链接

https://loj.ac/problem/6268

题解

用生成函数表示

直接求完 $\phi(x)$ 后多项式逆元即可。。




代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/**
*         ┏┓    ┏┓
*         ┏┛┗━━━━━━━┛┗━━━┓
*         ┃       ┃  
*         ┃   ━    ┃
*         ┃ >   < ┃
*         ┃       ┃
*         ┃... ⌒ ...  ┃
*         ┃ ┃
*         ┗━┓ ┏━┛
*          ┃ ┃ Code is far away from bug with the animal protecting          
*          ┃ ┃ 神兽保佑,代码无bug
*          ┃ ┃           
*          ┃ ┃       
*          ┃ ┃
*          ┃ ┃           
*          ┃ ┗━━━┓
*          ┃ ┣┓
*          ┃ ┏┛
*          ┗┓┓┏━━━━━━━━┳┓┏┛
*           ┃┫┫ ┃┫┫
*           ┗┻┛ ┗┻┛
*/

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<set>
#include<bitset>
#include<complex>
#include<assert.h>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1ll<<x)
#define mid (x+y>>1)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define NM 300005
#define nm 65536
using namespace std;
const double pi=acos(-1);
const ll inf=998244353;
ll read(){
ll x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}



inline void reduce(ll&x){x+=x>>63&inf;}
inline ll qpow(ll x,ll t){
ll s=1;
for(;t;t>>=1,x=x*x%inf)if(t&1)s=s*x%inf;
return s;
}
namespace Poly{
int lim,bit,rev[NM],w[NM],W[NM];
ll invn;
void clear(ll*a,ll*b){if(a<b)memset(a,0,sizeof(ll)*(b-a));}
void init(int m){
for(lim=1,bit=0;lim<m;lim<<=1)bit++;invn=qpow(lim,inf-2);
inc(i,1,lim-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
ll t=qpow(3,(inf-1)/lim);W[0]=1;
inc(i,1,lim)W[i]=W[i-1]*t%inf;
}
void fft(ll*a,int f=0){
int n=lim;
inc(i,1,n-1)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int k=1;k<n;k<<=1){
int t=n/k>>1;
for(int i=0,j=0;i<k;i++,j+=t)w[i]=W[f?n-j:j];
for(int i=0;i<n;i+=k<<1)
for(int j=0;j<k;j++){
ll x=a[i+j],y=w[j]*a[i+j+k]%inf;
reduce(a[i+j]=x+y-inf);reduce(a[i+j+k]=x-y);
}
}
if(f)inc(i,0,n-1)a[i]=a[i]*invn%inf;
}
ll _a[NM];
void inv(ll*b,ll*a,int m){
if(m==1){b[0]=qpow(a[0],inf-2);return;}
inv(b,a,m+1>>1);init(m<<1);
copy(a,a+m,_a);clear(_a+m,_a+lim);clear(b+m,b+lim);
fft(b);fft(_a);
inc(i,0,lim-1)b[i]=b[i]*(2-_a[i]*b[i]%inf+inf)%inf;
fft(b,1);clear(b+m,b+lim);
}
}

int n;
ll a[NM],b[NM];

int main(){
n=read();
for(int k=1;k*(3*k+1)/2<=n;k++)if(k&1)a[k*(3*k+1)/2]=inf-1;else a[k*(3*k+1)/2]=1;
for(int k=1;k*(3*k-1)/2<=n;k++)if(k&1)a[k*(3*k-1)/2]=inf-1;else a[k*(3*k-1)/2]=1;
a[0]=1;
Poly::inv(b,a,n+1);
inc(i,1,n)printf("%lld\n",b[i]);
return 0;
}