1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
| #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<map> #include<stack> #include<cmath> #include<set> #include<bitset> #include<assert.h> #define inc(i,l,r) for(int i=l;i<=r;i++) #define dec(i,l,r) for(int i=l;i>=r;i--) #define link(x) for(edge *j=h[x];j;j=j->next) #define mem(a) memset(a,0,sizeof(a)) #define ll long long #define eps 1e-6 #define succ(x) (1<<x) #define lowbit(x) (x&(-x)) #define sqr(x) ((x)*(x)) #define NM 50005 #define nm 100005 #define pi 3.1415926535897931 using namespace std; const int inf=1e9; ll read(){ ll x=0,f=1;char ch=getchar(); while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();} while(isdigit(ch))x=x*10+ch-'0',ch=getchar(); return f*x; }
struct edge{int t;edge*next;}e[nm],*h[NM],*o=e; void add(int x,int y){o->t=y;o->next=h[x];h[x]=o++;} int n,m,_x,_y,cnt[NM],size[NM],a[11]; int smin,root,tot; bool v[NM]; ll ans;
void dfs2(int x,int f){size[x]=1;link(x)if(!v[j->t]&&j->t!=f)dfs2(j->t,x),size[x]+=size[j->t];} void getroot(int x,int f){ int s=tot-size[x]; link(x)if(!v[j->t]&&j->t!=f)getroot(j->t,x),s=max(s,size[j->t]); if(s<smin)smin=s,root=x; }
void dfs(int x,int f,int t){ inc(i,1,m)if(t<=a[i])ans+=cnt[a[i]-t]; link(x)if(!v[j->t]&&j->t!=f)dfs(j->t,x,t+1); } void dfs1(int x,int f,int t){ cnt[t]++;link(x)if(!v[j->t]&&j->t!=f)dfs1(j->t,x,t+1); }
void solve(int x){ dfs2(x,0); tot=size[x];smin=inf; getroot(x,0); v[root]++;cnt[0]++; link(root)if(!v[j->t]){ dfs(j->t,root,1); dfs1(j->t,root,1); } inc(i,0,tot)cnt[i]=0; link(root)if(!v[j->t])solve(j->t); }
int main(){ n=read();m=read(); inc(i,1,m)a[i]=read(); inc(i,2,n){_x=read();_y=read();add(_x,_y);add(_y,_x);} solve(1); inc(i,1,3){int t=(n-i+3)/3;printf("%.2lf\n",1.0*t*(t-1)*ans/n/(n-1));} return 0; }
|